Answer :
To find the potential energy, we use the formula
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the gravitational acceleration,
- [tex]$h$[/tex] is the height.
We are given:
- [tex]$m = 25\, \text{kg}$[/tex],
- [tex]$g = 9.8\, \text{m/s}^2$[/tex],
- [tex]$h = 3\, \text{m}$[/tex].
Now, substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
First, calculate the product of [tex]$25 \times 9.8$[/tex]:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Then, multiply by [tex]$3$[/tex]:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy of the bicycle at the top of the hill is
[tex]$$
\boxed{735\, \text{J}}.
$$[/tex]
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the gravitational acceleration,
- [tex]$h$[/tex] is the height.
We are given:
- [tex]$m = 25\, \text{kg}$[/tex],
- [tex]$g = 9.8\, \text{m/s}^2$[/tex],
- [tex]$h = 3\, \text{m}$[/tex].
Now, substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
First, calculate the product of [tex]$25 \times 9.8$[/tex]:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Then, multiply by [tex]$3$[/tex]:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy of the bicycle at the top of the hill is
[tex]$$
\boxed{735\, \text{J}}.
$$[/tex]