Answer :
To find the potential energy of a 25 kg bicycle resting at the top of a hill 3 meters high, we can use the formula for potential energy:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass in kilograms,
- [tex]\( g \)[/tex] is the acceleration due to gravity, approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex],
- [tex]\( h \)[/tex] is the height in meters.
Let's plug in the given values:
1. The mass of the bicycle ([tex]\( m \)[/tex]) is 25 kg.
2. The acceleration due to gravity ([tex]\( g \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
3. The height ([tex]\( h \)[/tex]) is 3 meters.
Now, substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Calculating this gives:
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle is [tex]\( 735 \, \text{J} \)[/tex]. The correct answer is 735 J.
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass in kilograms,
- [tex]\( g \)[/tex] is the acceleration due to gravity, approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex],
- [tex]\( h \)[/tex] is the height in meters.
Let's plug in the given values:
1. The mass of the bicycle ([tex]\( m \)[/tex]) is 25 kg.
2. The acceleration due to gravity ([tex]\( g \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
3. The height ([tex]\( h \)[/tex]) is 3 meters.
Now, substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Calculating this gives:
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle is [tex]\( 735 \, \text{J} \)[/tex]. The correct answer is 735 J.