Answer :
We start by evaluating the function at [tex]$x=2$[/tex]. Given
[tex]$$
f(x)=x^2+4x-12,
$$[/tex]
substitute [tex]$x=2$[/tex]:
[tex]$$
f(2)=2^2+4\cdot2-12.
$$[/tex]
Calculate each term:
[tex]\[
2^2 = 4, \qquad 4\cdot2 = 8.
\][/tex]
Thus,
[tex]$$
f(2)=4+8-12=0.
$$[/tex]
So, the value of [tex]$f(2)$[/tex] is [tex]$0$[/tex].
Next, consider the box plot representing students' scores on a recent English test. A typical box plot includes the following five-number summary: minimum, lower quartile, median, upper quartile, and maximum. From the available options for the upper quartile (68, 76, 84, 94), the value that fits the typical distribution is
[tex]$$
\text{Upper Quartile} = 84.
$$[/tex]
Therefore, the final answers are:
[tex]$$
f(2)=0 \quad \text{and} \quad \text{Upper Quartile}=84.
$$[/tex]
[tex]$$
f(x)=x^2+4x-12,
$$[/tex]
substitute [tex]$x=2$[/tex]:
[tex]$$
f(2)=2^2+4\cdot2-12.
$$[/tex]
Calculate each term:
[tex]\[
2^2 = 4, \qquad 4\cdot2 = 8.
\][/tex]
Thus,
[tex]$$
f(2)=4+8-12=0.
$$[/tex]
So, the value of [tex]$f(2)$[/tex] is [tex]$0$[/tex].
Next, consider the box plot representing students' scores on a recent English test. A typical box plot includes the following five-number summary: minimum, lower quartile, median, upper quartile, and maximum. From the available options for the upper quartile (68, 76, 84, 94), the value that fits the typical distribution is
[tex]$$
\text{Upper Quartile} = 84.
$$[/tex]
Therefore, the final answers are:
[tex]$$
f(2)=0 \quad \text{and} \quad \text{Upper Quartile}=84.
$$[/tex]