Answer :
To find [tex]\( f(2) \)[/tex] for the function [tex]\( f(x) = 3^{(x+4)} \)[/tex], you follow these steps:
1. Start with the given function: [tex]\( f(x) = 3^{(x+4)} \)[/tex].
2. Substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[
f(2) = 3^{(2+4)}
\][/tex]
3. Simplify the exponent:
[tex]\[
f(2) = 3^6
\][/tex]
4. Calculate [tex]\( 3^6 \)[/tex]:
- First, calculate [tex]\( 3^3 = 3 \times 3 \times 3 = 27 \)[/tex].
- Then, calculate [tex]\( 3^6 = 27 \times 3 \times 3 = 729 \)[/tex].
So, [tex]\( f(2) = 729 \)[/tex].
The correct answer is 729.
1. Start with the given function: [tex]\( f(x) = 3^{(x+4)} \)[/tex].
2. Substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[
f(2) = 3^{(2+4)}
\][/tex]
3. Simplify the exponent:
[tex]\[
f(2) = 3^6
\][/tex]
4. Calculate [tex]\( 3^6 \)[/tex]:
- First, calculate [tex]\( 3^3 = 3 \times 3 \times 3 = 27 \)[/tex].
- Then, calculate [tex]\( 3^6 = 27 \times 3 \times 3 = 729 \)[/tex].
So, [tex]\( f(2) = 729 \)[/tex].
The correct answer is 729.