College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the polynomial function of lowest degree with a leading coefficient of 1 and roots [tex]\sqrt{3}, -4[/tex], and [tex]4[/tex]?

A. [tex]f(x)=x^3-3x^2+16x+48[/tex]

B. [tex]f(x)=x^3-3x^2-16x+48[/tex]

C. [tex]f(x)=x^4-19x^2+48[/tex]

D. [tex]f(x)=x^4-13x^2+48[/tex]

Answer :

To find the polynomial function of the lowest degree with a leading coefficient of 1 and roots [tex]\( \sqrt{3}, -4 \)[/tex], and [tex]\( 4 \)[/tex], we proceed as follows:

1. Identify the Roots: The roots of the polynomial are [tex]\( \sqrt{3} \)[/tex], [tex]\(-4\)[/tex], and [tex]\( 4 \)[/tex].

2. Form the Factors: For each root [tex]\( r \)[/tex], the factor of the polynomial is [tex]\( (x - r) \)[/tex]. Thus, for the given roots, the factors will be:
- [tex]\( (x - \sqrt{3}) \)[/tex]
- [tex]\( (x + 4) \)[/tex]
- [tex]\( (x - 4) \)[/tex]

3. Multiply the Factors: The polynomial is formed by multiplying all these factors together:
[tex]\[
(x - \sqrt{3})(x + 4)(x - 4)
\][/tex]

4. Expand the Product:
First, multiply [tex]\( (x + 4)(x - 4) \)[/tex] using the difference of squares:
[tex]\[
(x + 4)(x - 4) = x^2 - 16
\][/tex]

Next, multiply this result by the remaining factor:
[tex]\[
(x - \sqrt{3})(x^2 - 16)
\][/tex]

Distribute [tex]\( (x - \sqrt{3}) \)[/tex] across [tex]\( (x^2 - 16) \)[/tex]:
[tex]\[
x(x^2 - 16) - \sqrt{3}(x^2 - 16)
\][/tex]

Perform the distribution:
[tex]\[
x^3 - 16x - \sqrt{3}x^2 + 16\sqrt{3}
\][/tex]

5. Combine Like Terms: Collect the terms together to write the polynomial:
- The [tex]\( x^3 \)[/tex] term is [tex]\( x^3 \)[/tex]
- The [tex]\( x^2 \)[/tex] term is [tex]\(-\sqrt{3}x^2\)[/tex]
- The [tex]\( x \)[/tex] term is [tex]\(-16x\)[/tex]
- The constant term is [tex]\( 16\sqrt{3} \)[/tex]

So the polynomial is:
[tex]\[
x^3 - \sqrt{3}x^2 - 16x + 16\sqrt{3}
\][/tex]

6. Verify Leading Coefficient: Check that the leading coefficient is 1, which it is in this case.

Therefore, the polynomial function that satisfies the given conditions is:
[tex]\[
f(x) = x^3 - \sqrt{3}x^2 - 16x + 16\sqrt{3}
\][/tex]

This expression matches our derived polynomial and represents the function with the specified roots and leading coefficient of 1.