Answer :
Given the formula for force,
[tex]$$
F = ma,
$$[/tex]
we need to solve for the mass [tex]$m$[/tex]. Here, the force [tex]$F$[/tex] is given as 200 N and the acceleration [tex]$a$[/tex] is given as [tex]$8 \, \mathrm{m/s^2}$[/tex].
Step 1: Solve for mass.
Rearrange the equation to solve for [tex]$m$[/tex]:
[tex]$$
m = \frac{F}{a}.
$$[/tex]
Step 2: Substitute the given values.
Plug in [tex]$F = 200$[/tex] N and [tex]$a = 8 \, \mathrm{m/s^2}$[/tex]:
[tex]$$
m = \frac{200 \, \mathrm{N}}{8 \, \mathrm{m/s^2}}.
$$[/tex]
Step 3: Calculate the mass.
Divide 200 by 8:
[tex]$$
m = 25 \, \mathrm{kg}.
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25 \, \mathrm{kg}}$[/tex].
[tex]$$
F = ma,
$$[/tex]
we need to solve for the mass [tex]$m$[/tex]. Here, the force [tex]$F$[/tex] is given as 200 N and the acceleration [tex]$a$[/tex] is given as [tex]$8 \, \mathrm{m/s^2}$[/tex].
Step 1: Solve for mass.
Rearrange the equation to solve for [tex]$m$[/tex]:
[tex]$$
m = \frac{F}{a}.
$$[/tex]
Step 2: Substitute the given values.
Plug in [tex]$F = 200$[/tex] N and [tex]$a = 8 \, \mathrm{m/s^2}$[/tex]:
[tex]$$
m = \frac{200 \, \mathrm{N}}{8 \, \mathrm{m/s^2}}.
$$[/tex]
Step 3: Calculate the mass.
Divide 200 by 8:
[tex]$$
m = 25 \, \mathrm{kg}.
$$[/tex]
Thus, the mass of the crate is [tex]$\boxed{25 \, \mathrm{kg}}$[/tex].