High School

For the exponential function [tex]f(x) = 3 \cdot 25^{1/2}[/tex], what is the value of [tex]f(1/2)[/tex]?

A. 40
B. 150
C. 15
D. 225

Answer :

To find the value of the function given by [tex]f(x) = 3 \cdot 25^{x^{1/2}}[/tex] at [tex]x = \frac{1}{2}[/tex], we first need to substitute [tex]\frac{1}{2}[/tex] into the function.

  1. Calculate [tex]f\left(\frac{1}{2}\right)[/tex]:
    [tex]f\left(\frac{1}{2}\right) = 3 \cdot 25^{\left(\frac{1}{2}\right)^{1/2}}[/tex]
    Since [tex]\left(\frac{1}{2}\right)^{1/2} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}[/tex], we can rewrite it as:
    [tex]f\left(\frac{1}{2}\right) = 3 \cdot 25^{\frac{1}{\sqrt{2}}}[/tex]

  2. Calculate [tex]25^{\frac{1}{\sqrt{2}}}[/tex]:
    We recognize that [tex]25 = 5^2[/tex], thus:
    [tex]25^{\frac{1}{\sqrt{2}}} = (5^2)^{\frac{1}{\sqrt{2}}} = 5^{\frac{2}{\sqrt{2}}} = 5^{\sqrt{2}}[/tex]
    This means our function becomes:
    [tex]f\left(\frac{1}{2}\right) = 3 \cdot 5^{\sqrt{2}}[/tex]

  3. Now, we will consider the subtraction specified in the question:
    [tex]f\left(\frac{1}{2}\right) - 40[/tex]

  4. We need to calculate the approximate value of [tex]5^{\sqrt{2}}[/tex]:
    Since [tex]\sqrt{2}[/tex] is approximately [tex]1.414[/tex], we can estimate:
    [tex]5^{\sqrt{2}} \approx 5^{1.414} \approx 6.9 \text{ (using a scientific calculator or logarithm)}[/tex]
    Therefore, we can substitute this value into the function:
    [tex]f\left(\frac{1}{2}\right) \approx 3 \cdot 6.9 \approx 20.7[/tex]

  5. Now performing the subtraction:
    [tex]20.7 - 40 \approx -19.3[/tex]

From analyzing the values the question provided later (-150, -15, -225), the subtraction is simplified to finding how [tex]-19.3[/tex] would compare to these other values in magnitude.

In conclusion, we have:

  • The function value at [tex]x = \frac{1}{2}[/tex] is approximately [tex]20.7[/tex].
  • The result of [tex]f\left(\frac{1}{2}\right) - 40[/tex] is approximately [tex]-19.3[/tex].

Therefore, if you want to understand or perform further calculations, you may adjust these values based on the needs presented in your question.

Answer:

C

Step-by-step explanation:

Assuming the function is

f(x) = 3 • [tex]25^{x}[/tex]

Then using the property of exponents/ radicals

• [tex]a^{\frac{1}{2} }[/tex] = [tex]\sqrt{a}[/tex]

To evaluate f( [tex]\frac{1}{2}[/tex] ) , substitute x = [tex]\frac{1}{2}[/tex] into f(x) , that is

f( [tex]\frac{1}{2}[/tex] )

= 3 × [tex]25^{\frac{1}{2} }[/tex]

= 3 × [tex]\sqrt{25}[/tex]

= 3 × 5

= 15