Answer :
To find the mass of the crate when a force is applied, we can use Newton's second law of motion, which states:
[tex]\[ \text{Force} = \text{mass} \times \text{acceleration} \][/tex]
In this case, we are given:
- Force = 200 Newtons (N)
- Acceleration = 8 meters per second squared (m/s²)
We want to find the mass. We can rearrange the formula to solve for mass:
[tex]\[ \text{mass} = \frac{\text{Force}}{\text{acceleration}} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ \text{mass} = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ \text{mass} = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kilograms.
[tex]\[ \text{Force} = \text{mass} \times \text{acceleration} \][/tex]
In this case, we are given:
- Force = 200 Newtons (N)
- Acceleration = 8 meters per second squared (m/s²)
We want to find the mass. We can rearrange the formula to solve for mass:
[tex]\[ \text{mass} = \frac{\text{Force}}{\text{acceleration}} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ \text{mass} = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ \text{mass} = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kilograms.