College

What is the difference of the polynomials?

[tex]\left(5x^3 + 4x^2\right) - \left(6x^2 - 2x - 9\right)[/tex]

A. [tex]-x^3 + 6x^2 + 9[/tex]

B. [tex]-x^3 + 2x^2 - 9[/tex]

C. [tex]5x^3 - 2x^2 - 2x - 9[/tex]

D. [tex]5x^3 - 2x^2 + 2x + 9[/tex]

Answer :

To find the difference of the polynomials

[tex]$$\left(5x^3 + 4x^2\right) - \left(6x^2 - 2x - 9\right),$$[/tex]

we follow these steps:

1. Distribute the minus sign:
When subtracting the second polynomial, distribute the minus sign to every term inside the parentheses:

[tex]$$
(5x^3 + 4x^2) - 6x^2 + 2x + 9.
$$[/tex]

2. Combine like terms:
- The only cubic term is [tex]$5x^3$[/tex].
- Combine the quadratic terms: [tex]$4x^2 - 6x^2 = -2x^2$[/tex].
- The linear term is [tex]$2x$[/tex].
- The constant is [tex]$9$[/tex].

This gives:

[tex]$$
5x^3 - 2x^2 + 2x + 9.
$$[/tex]

3. Write the final answer:
The difference of the polynomials is

[tex]$$
\boxed{5x^3 - 2x^2 + 2x + 9}.
$$[/tex]

This is the simplified form of the difference between the two given polynomials.