Answer :
Sure, let's simplify the expression step-by-step:
We start with the expression:
[tex]\[ -9.2(8x - 4) + 0.7(2 + 6.3x) \][/tex]
Step 1: Distribute -9.2 across the terms inside the first parenthesis.
- Multiply [tex]\(-9.2\)[/tex] by [tex]\(8x\)[/tex]:
[tex]\(-9.2 \times 8x = -73.6x\)[/tex]
- Multiply [tex]\(-9.2\)[/tex] by [tex]\(-4\)[/tex]:
[tex]\(-9.2 \times -4 = 36.8\)[/tex]
So, [tex]\(-9.2(8x - 4) = -73.6x + 36.8\)[/tex].
Step 2: Distribute 0.7 across the terms inside the second parenthesis.
- Multiply [tex]\(0.7\)[/tex] by [tex]\(2\)[/tex]:
[tex]\(0.7 \times 2 = 1.4\)[/tex]
- Multiply [tex]\(0.7\)[/tex] by [tex]\(6.3x\)[/tex]:
[tex]\(0.7 \times 6.3x = 4.41x\)[/tex]
So, [tex]\(0.7(2 + 6.3x) = 1.4 + 4.41x\)[/tex].
Step 3: Combine all the terms.
Now, combine the [tex]\(x\)[/tex] terms and the constant terms:
- For the [tex]\(x\)[/tex] terms: [tex]\(-73.6x + 4.41x = -69.19x\)[/tex]
- For the constant terms: [tex]\(36.8 + 1.4 = 38.2\)[/tex]
So, the simplified expression is:
[tex]\[ -69.19x + 38.2 \][/tex]
The correct answer is:
[tex]\[ -69.19x + 38.2 \][/tex]
We start with the expression:
[tex]\[ -9.2(8x - 4) + 0.7(2 + 6.3x) \][/tex]
Step 1: Distribute -9.2 across the terms inside the first parenthesis.
- Multiply [tex]\(-9.2\)[/tex] by [tex]\(8x\)[/tex]:
[tex]\(-9.2 \times 8x = -73.6x\)[/tex]
- Multiply [tex]\(-9.2\)[/tex] by [tex]\(-4\)[/tex]:
[tex]\(-9.2 \times -4 = 36.8\)[/tex]
So, [tex]\(-9.2(8x - 4) = -73.6x + 36.8\)[/tex].
Step 2: Distribute 0.7 across the terms inside the second parenthesis.
- Multiply [tex]\(0.7\)[/tex] by [tex]\(2\)[/tex]:
[tex]\(0.7 \times 2 = 1.4\)[/tex]
- Multiply [tex]\(0.7\)[/tex] by [tex]\(6.3x\)[/tex]:
[tex]\(0.7 \times 6.3x = 4.41x\)[/tex]
So, [tex]\(0.7(2 + 6.3x) = 1.4 + 4.41x\)[/tex].
Step 3: Combine all the terms.
Now, combine the [tex]\(x\)[/tex] terms and the constant terms:
- For the [tex]\(x\)[/tex] terms: [tex]\(-73.6x + 4.41x = -69.19x\)[/tex]
- For the constant terms: [tex]\(36.8 + 1.4 = 38.2\)[/tex]
So, the simplified expression is:
[tex]\[ -69.19x + 38.2 \][/tex]
The correct answer is:
[tex]\[ -69.19x + 38.2 \][/tex]