Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What are the [tex]$x$[/tex]-intercepts of the graph of [tex]$y = -x^6 - 6x^5 + 50x^3 + 45x^2 - 108x - 108$[/tex]?

A. [tex]$(-3,0), (-1,0), (-2,0)$[/tex]

B. [tex]$(-3,0), (-1,0), (2,0)$[/tex]

C. [tex]$(-3,0), (1,0), (2,0)$[/tex]

D. [tex]$(3,0), (1,0), (-2,0)$[/tex]

Answer :

To determine the [tex]\( x \)[/tex]-intercepts of the graph of the polynomial [tex]\( y = -x^6 - 6x^5 + 50x^3 + 45x^2 - 108x - 108 \)[/tex], we need to find the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex]. That is, we need to solve for [tex]\( x \)[/tex] in the equation:

[tex]\[ -x^6 - 6x^5 + 50x^3 + 45x^2 - 108x - 108 = 0. \][/tex]

By solving this polynomial equation for [tex]\( x \)[/tex], we obtain the [tex]\( x \)[/tex]-intercepts. These are the points where the graph of the function crosses the [tex]\( x \)[/tex]-axis.

The roots (solutions) of this polynomial equation are:
[tex]\[ x = -3 \][/tex]
[tex]\[ x = -1 \][/tex]
[tex]\[ x = 2 \][/tex]

Thus, the [tex]\( x \)[/tex]-intercepts of the graph are the points where [tex]\( x \)[/tex] equals these values and [tex]\( y \)[/tex] is zero. We can write these intercepts as:
[tex]\[ (-3, 0), (-1, 0), (2, 0) \][/tex]

When comparing these points with the provided answer choices, we find that the corresponding choice is:

B. [tex]\((-3,0),(-1,0),(2,0)\)[/tex]

Therefore, the correct answer is:
[tex]\[ B. (-3,0),(-1,0),(2,0) \][/tex]