Answer :
To solve the problem step by step, we need to find the value of [tex]\( c \)[/tex] using the equation [tex]\( f = c \cdot d^3 \)[/tex]. We're given the values [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex].
1. Identify the formula:
The formula given is [tex]\( f = c \cdot d^3 \)[/tex].
2. Plug in the known values:
Substitute [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( 10^3 \)[/tex]:
[tex]\( 10^3 \)[/tex] means [tex]\( 10 \times 10 \times 10 = 1000 \)[/tex].
4. Substitute back to the equation:
Now the equation looks like:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]:
To find [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Simplify the fraction:
[tex]\(\frac{450}{1000} = 0.45\)[/tex].
So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
1. Identify the formula:
The formula given is [tex]\( f = c \cdot d^3 \)[/tex].
2. Plug in the known values:
Substitute [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( 10^3 \)[/tex]:
[tex]\( 10^3 \)[/tex] means [tex]\( 10 \times 10 \times 10 = 1000 \)[/tex].
4. Substitute back to the equation:
Now the equation looks like:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]:
To find [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Simplify the fraction:
[tex]\(\frac{450}{1000} = 0.45\)[/tex].
So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].