College

Use the given information to construct a [tex]$95\%$[/tex] confidence interval estimate of the mean of the population.

Given:
- [tex]$n=62$[/tex]
- [tex]$\sigma=11.4$[/tex]
- [tex]$\bar{x}=102.1$[/tex]

Choose the correct confidence interval:

A. [tex]$100.7 < \mu < 103.5$[/tex]
B. [tex]$101.7 < \mu < 102.5$[/tex]
C. [tex]$99.3 < \mu < 104.9$[/tex]
D. [tex]$66.1 < \mu < 138.1$[/tex]

Answer :

To construct a [tex]$95\%$[/tex] confidence interval for the population mean, we follow these steps:

1. Calculate the standard error (SE) of the sample mean:
[tex]$$
SE = \frac{\sigma}{\sqrt{n}} = \frac{11.4}{\sqrt{62}} \approx 1.4478.
$$[/tex]

2. Determine the critical value for a [tex]$95\%$[/tex] confidence level. For a normal distribution, this value is [tex]$z^* \approx 1.96$[/tex].

3. Compute the margin of error (ME):
[tex]$$
ME = z^* \times SE = 1.96 \times 1.4478 \approx 2.8377.
$$[/tex]

4. Establish the lower and upper bounds of the confidence interval:
[tex]$$
\text{Lower bound} = \bar{x} - ME = 102.1 - 2.8377 \approx 99.2623,
$$[/tex]
[tex]$$
\text{Upper bound} = \bar{x} + ME = 102.1 + 2.8377 \approx 104.9377.
$$[/tex]

Thus, the [tex]$95\%$[/tex] confidence interval for the population mean is approximately:
[tex]$$
99.3 < \mu < 104.9.
$$[/tex]

This matches the third option.