Answer :
We are given the function
[tex]$$
f(x) = -5x^2 - x + 20.
$$[/tex]
To find [tex]$f(3)$[/tex], we substitute [tex]$x = 3$[/tex] into the function:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
Now, follow these steps:
1. Compute the square:
[tex]$$
(3)^2 = 9.
$$[/tex]
2. Multiply by [tex]$-5$[/tex]:
[tex]$$
-5(9) = -45.
$$[/tex]
3. Substitute back into the expression:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
4. Combine the terms:
[tex]$$
-45 - 3 = -48,
$$[/tex]
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the value of [tex]$f(3)$[/tex] is
[tex]$$
\boxed{-28}.
$$[/tex]
[tex]$$
f(x) = -5x^2 - x + 20.
$$[/tex]
To find [tex]$f(3)$[/tex], we substitute [tex]$x = 3$[/tex] into the function:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
Now, follow these steps:
1. Compute the square:
[tex]$$
(3)^2 = 9.
$$[/tex]
2. Multiply by [tex]$-5$[/tex]:
[tex]$$
-5(9) = -45.
$$[/tex]
3. Substitute back into the expression:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
4. Combine the terms:
[tex]$$
-45 - 3 = -48,
$$[/tex]
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the value of [tex]$f(3)$[/tex] is
[tex]$$
\boxed{-28}.
$$[/tex]