College

Use the given information to construct a [tex]95\%[/tex] confidence interval estimate of the mean of the population.

Given:
- [tex]n = 62[/tex]
- [tex]\sigma = 11.4[/tex]
- [tex]\bar{x} = 102.1[/tex]

Options:
A. [tex]100.7 \ \textless \ \mu \ \textless \ 103.5[/tex]
B. [tex]101.7 \ \textless \ \mu \ \textless \ 102.5[/tex]
C. [tex]99.3 \ \textless \ \mu \ \textless \ 104.9[/tex]
D. [tex]66.1 \ \textless \ \mu \ \textless \ 138.1[/tex]

Answer :

We are given the sample mean [tex]$\bar{x} = 102.1$[/tex], population standard deviation [tex]$\sigma = 11.4$[/tex], and sample size [tex]$n = 62$[/tex]. For a 95% confidence interval when the population standard deviation is known, we use the [tex]$z$[/tex]-score corresponding to the 95% level, which is [tex]$z = 1.96$[/tex].

The standard error of the mean is calculated as:
[tex]$$
\text{SE} = \frac{\sigma}{\sqrt{n}} = \frac{11.4}{\sqrt{62}}.
$$[/tex]

Evaluating the square root,
[tex]$$
\sqrt{62} \approx 7.874,
$$[/tex]
so
[tex]$$
\text{SE} \approx \frac{11.4}{7.874} \approx 1.4478.
$$[/tex]

Next, the margin of error is given by:
[tex]$$
\text{ME} = z \times \text{SE} = 1.96 \times 1.4478 \approx 2.8377.
$$[/tex]

The confidence interval is then computed by subtracting and adding the margin of error to the sample mean:
[tex]$$
\text{Lower bound} = \bar{x} - \text{ME} \approx 102.1 - 2.8377 \approx 99.2623,
$$[/tex]
[tex]$$
\text{Upper bound} = \bar{x} + \text{ME} \approx 102.1 + 2.8377 \approx 104.9377.
$$[/tex]

Thus, the 95% confidence interval for the population mean [tex]$\mu$[/tex] is approximately:
[tex]$$
99.3 < \mu < 104.9.
$$[/tex]

Among the options, this corresponds to:
[tex]$$
99.3 < \mu < 104.9.
$$[/tex]