Answer :
To solve this problem, we need to determine how many grams of water ([tex]\( H_2O \)[/tex]) will be formed when 12 grams of oxygen ([tex]\( O_2 \)[/tex]) are used in the given chemical reaction:
[tex]\[ 4 NH_3(aq) + 5 O_2(g) \rightarrow 4 NO(g) + 6 H_2O(l) \][/tex]
Here's a step-by-step solution:
1. Identify Molar Masses:
- The molar mass of [tex]\( O_2 \)[/tex] is 32 grams/mol (since each oxygen atom has a molar mass of 16 grams/mol and [tex]\( O_2 \)[/tex] has two oxygen atoms).
- The molar mass of [tex]\( H_2O \)[/tex] is 18 grams/mol (16 grams/mol for oxygen and 2 grams/mol for two hydrogen atoms).
2. Calculate Moles of [tex]\( O_2 \)[/tex]:
- Given 12 grams of [tex]\( O_2 \)[/tex], calculate the number of moles of [tex]\( O_2 \)[/tex]:
[tex]\[
\text{Moles of } O_2 = \frac{12 \text{ grams}}{32 \text{ grams/mol}} = 0.375 \text{ moles}
\][/tex]
3. Use the Reaction Stoichiometry:
- According to the balanced chemical equation, 5 moles of [tex]\( O_2 \)[/tex] produce 6 moles of [tex]\( H_2O \)[/tex].
4. Calculate Moles of [tex]\( H_2O \)[/tex]:
- With 0.375 moles of [tex]\( O_2 \)[/tex], the moles of [tex]\( H_2O \)[/tex] formed can be calculated using the ratio from the balanced equation:
[tex]\[
\text{Moles of } H_2O = 0.375 \text{ moles } O_2 \times \frac{6 \text{ moles } H_2O}{5 \text{ moles } O_2} = 0.45 \text{ moles}
\][/tex]
5. Calculate Grams of [tex]\( H_2O \)[/tex]:
- Finally, convert the moles of [tex]\( H_2O \)[/tex] to grams:
[tex]\[
\text{Grams of } H_2O = 0.45 \text{ moles} \times 18 \text{ grams/mol} = 8.1 \text{ grams}
\][/tex]
Thus, 8.1 grams of water ([tex]\( H_2O \)[/tex]) will be formed. Therefore, the correct answer is (a) 8.10 grams.
[tex]\[ 4 NH_3(aq) + 5 O_2(g) \rightarrow 4 NO(g) + 6 H_2O(l) \][/tex]
Here's a step-by-step solution:
1. Identify Molar Masses:
- The molar mass of [tex]\( O_2 \)[/tex] is 32 grams/mol (since each oxygen atom has a molar mass of 16 grams/mol and [tex]\( O_2 \)[/tex] has two oxygen atoms).
- The molar mass of [tex]\( H_2O \)[/tex] is 18 grams/mol (16 grams/mol for oxygen and 2 grams/mol for two hydrogen atoms).
2. Calculate Moles of [tex]\( O_2 \)[/tex]:
- Given 12 grams of [tex]\( O_2 \)[/tex], calculate the number of moles of [tex]\( O_2 \)[/tex]:
[tex]\[
\text{Moles of } O_2 = \frac{12 \text{ grams}}{32 \text{ grams/mol}} = 0.375 \text{ moles}
\][/tex]
3. Use the Reaction Stoichiometry:
- According to the balanced chemical equation, 5 moles of [tex]\( O_2 \)[/tex] produce 6 moles of [tex]\( H_2O \)[/tex].
4. Calculate Moles of [tex]\( H_2O \)[/tex]:
- With 0.375 moles of [tex]\( O_2 \)[/tex], the moles of [tex]\( H_2O \)[/tex] formed can be calculated using the ratio from the balanced equation:
[tex]\[
\text{Moles of } H_2O = 0.375 \text{ moles } O_2 \times \frac{6 \text{ moles } H_2O}{5 \text{ moles } O_2} = 0.45 \text{ moles}
\][/tex]
5. Calculate Grams of [tex]\( H_2O \)[/tex]:
- Finally, convert the moles of [tex]\( H_2O \)[/tex] to grams:
[tex]\[
\text{Grams of } H_2O = 0.45 \text{ moles} \times 18 \text{ grams/mol} = 8.1 \text{ grams}
\][/tex]
Thus, 8.1 grams of water ([tex]\( H_2O \)[/tex]) will be formed. Therefore, the correct answer is (a) 8.10 grams.