College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ The period [tex]$T$[/tex] (in seconds) of a pendulum is given by [tex]$T = 2 \pi \sqrt{\frac{L}{32}}$[/tex], where [tex]$L$[/tex] stands for the length (in feet) of the pendulum. If [tex]$\pi = 3.14$[/tex] and the period is 1.57 seconds, what is the length?

A. 16 feet
B. 20 feet
C. 8 feet
D. 2 feet

Answer :

Let's solve the problem step by step:

We are given the formula for the period [tex]\( T \)[/tex] of a pendulum:

[tex]\[ T = 2 \pi \sqrt{\frac{L}{32}} \][/tex]

where:
- [tex]\( T \)[/tex] is the period in seconds,
- [tex]\( L \)[/tex] is the length of the pendulum in feet.

We know:
- [tex]\( T = 1.57 \)[/tex] seconds,
- [tex]\( \pi = 3.14 \)[/tex].

We are asked to find [tex]\( L \)[/tex].

1. Rearrange the formula to solve for [tex]\( L \)[/tex]:

[tex]\[
T = 2 \pi \sqrt{\frac{L}{32}}
\][/tex]

Divide both sides by [tex]\( 2 \pi \)[/tex]:

[tex]\[
\frac{T}{2 \pi} = \sqrt{\frac{L}{32}}
\][/tex]

2. Square both sides to eliminate the square root:

[tex]\[
\left(\frac{T}{2 \pi}\right)^2 = \frac{L}{32}
\][/tex]

3. Multiply both sides by 32 to solve for [tex]\( L \)[/tex]:

[tex]\[
L = 32 \times \left(\frac{T}{2 \pi}\right)^2
\][/tex]

4. Substitute in the known values of [tex]\( T \)[/tex] and [tex]\( \pi \)[/tex]:

[tex]\[
L = 32 \times \left(\frac{1.57}{2 \times 3.14}\right)^2
\][/tex]

5. Calculate inside the parentheses first:

[tex]\[
\frac{1.57}{2 \times 3.14} = \frac{1.57}{6.28} \approx 0.25
\][/tex]

6. Square the result:

[tex]\[
0.25^2 = 0.0625
\][/tex]

7. Multiply by 32:

[tex]\[
L = 32 \times 0.0625 = 2
\][/tex]

Therefore, the length of the pendulum is [tex]\( 2 \)[/tex] feet.