The mean of the differences is 193 points, and the standard deviation of the differences is 62.73 points. The conditions for inference are met. What is the correct [tex]98\%[/tex] confidence interval for the mean difference (after - before) in score?

A. [tex]193 \pm 2.764\left(\frac{62.73}{\sqrt{9}}\right)[/tex]

B. [tex]193 \pm 2.764\left(\frac{62.73}{\sqrt{10}}\right)[/tex]

C. [tex]193 \pm 2.821\left(\frac{62.73}{\sqrt{9}}\right)[/tex]

D. [tex]193 \pm 2.821\left(\frac{62.73}{\sqrt{10}}\right)[/tex]

Answer :

We are given that the mean of the differences is
[tex]$$\bar{d} = 193,$$[/tex]
the standard deviation is
[tex]$$s_d = 62.73,$$[/tex]
and the sample size is
[tex]$$n = 10.$$[/tex]

Since this is a paired differences setup, the degrees of freedom are
[tex]$$df = n - 1 = 9.$$[/tex]

For a 98% confidence interval, the appropriate formula is
[tex]$$
\bar{d} \pm t^*\frac{s_d}{\sqrt{n}},
$$[/tex]
where [tex]$t^*$[/tex] is the critical value from the [tex]$t$[/tex]-distribution with 9 degrees of freedom. For a 98% confidence level, it has been determined that
[tex]$$
t^*\approx 2.821.
$$[/tex]

Now, compute the standard error:
[tex]$$
SE = \frac{s_d}{\sqrt{n}} = \frac{62.73}{\sqrt{10}}.
$$[/tex]

The margin of error (ME) is then:
[tex]$$
ME = 2.821 \cdot \frac{62.73}{\sqrt{10}}.
$$[/tex]

Thus, the 98% confidence interval for the mean difference is:
[tex]$$
193 \pm 2.821\left(\frac{62.73}{\sqrt{10}}\right).
$$[/tex]

This corresponds to the interval from
[tex]$$
193 - 2.821\left(\frac{62.73}{\sqrt{10}}\right)
$$[/tex]
to
[tex]$$
193 + 2.821\left(\frac{62.73}{\sqrt{10}}\right).
$$[/tex]

So the correct answer is:
[tex]$$
193 \pm 2.821\left(\frac{62.73}{\sqrt{10}}\right).
$$[/tex]