College

The first three terms of a geometric sequence are shown below:

[tex]x+3, -2x^2-6x, 4x^3+12x^2, \ldots[/tex]

What is the eighth term of the sequence?

A. [tex]-128x^9-384x^7[/tex]
B. [tex]128x^8+384x^7[/tex]
C. [tex]256x^9+768x^8[/tex]
D. [tex]-256x^9-768x^8[/tex]

Answer :

We are given the first three terms of a geometric sequence:

[tex]$$
a_1 = x+3, \quad a_2=-2x^2-6x, \quad a_3=4x^3+12x^2.
$$[/tex]

Step 1. Find the common ratio.

For a geometric sequence, the common ratio [tex]$r$[/tex] is found by dividing any term by its preceding term. Using the first two terms, we have

[tex]$$
r = \frac{a_2}{a_1} = \frac{-2x^2-6x}{x+3}.
$$[/tex]

Notice that the numerator can be factored:

[tex]$$
-2x^2-6x = -2x(x+3).
$$[/tex]

Thus,

[tex]$$
r = \frac{-2x(x+3)}{x+3}.
$$[/tex]

Provided [tex]$x+3\neq 0$[/tex], we cancel the common factor:

[tex]$$
r = -2x.
$$[/tex]

For confirmation, you can also check with the third term:

[tex]$$
r = \frac{a_3}{a_2} = \frac{4x^3+12x^2}{-2x^2-6x}.
$$[/tex]

Factor both numerator and denominator:

- Numerator: [tex]$4x^3+12x^2 = 4x^2(x+3)$[/tex].
- Denominator: [tex]$-2x^2-6x = -2x(x+3)$[/tex].

Then,

[tex]$$
r = \frac{4x^2(x+3)}{-2x(x+3)} = -2x.
$$[/tex]

Both methods confirm that

[tex]$$
r = -2x.
$$[/tex]

Step 2. Use the formula for the [tex]$n$[/tex]th term.

The [tex]$n$[/tex]th term of a geometric sequence is given by

[tex]$$
a_n = a_1 \cdot r^{n-1}.
$$[/tex]

For the eighth term ([tex]$n=8$[/tex]):

[tex]$$
a_8 = a_1 \cdot r^{7} = (x+3) \cdot (-2x)^7.
$$[/tex]

Step 3. Compute [tex]$(-2x)^7$[/tex].

We have

[tex]$$
(-2x)^7 = (-2)^7 \cdot x^7 = -128 \cdot x^7.
$$[/tex]

Step 4. Multiply by the first term.

Substitute back into the expression for [tex]$a_8$[/tex]:

[tex]$$
a_8 = (x+3) \cdot (-128x^7) = -128x^7(x+3).
$$[/tex]

Distribute [tex]$-128x^7$[/tex] over [tex]$(x+3)$[/tex]:

[tex]$$
a_8 = -128x^8 - 384x^7.
$$[/tex]

Thus, the eighth term of the sequence is

[tex]$$
\boxed{-128x^8-384x^7}.
$$[/tex]