College

Subtract: [tex]\left(4x^3 + 9xy + 8y\right) - \left(3x^3 + 5xy - 8y\right)[/tex]



A) [tex]x^3 + 4xy[/tex]



B) [tex]7x^3 + 14xy[/tex]



C) [tex]x^3 + 4xy + 16y[/tex]



D) [tex]7x^3 + 14xy + 16y[/tex]

Answer :

We start with the expression:

$$
\left(4x^3 + 9xy + 8y\right) - \left(3x^3 + 5xy - 8y\right).
$$

**Step 1: Distribute the subtraction**

Subtracting the second polynomial means we change the signs of each term in the second polynomial:

$$
4x^3 + 9xy + 8y - 3x^3 - 5xy + 8y.
$$

**Step 2: Combine like terms**

- For the \(x^3\) terms:

$$
4x^3 - 3x^3 = x^3.
$$

- For the \(xy\) terms:

$$
9xy - 5xy = 4xy.
$$

- For the \(y\) terms:

$$
8y + 8y = 16y.
$$

**Step 3: Write the simplified expression**

Putting it all together, we obtain:

$$
x^3 + 4xy + 16y.
$$

Thus, the correct answer is:

$$
\boxed{x^3 + 4xy + 16y}.
$$