College

Solve the equation [tex]25x^3 + 25x^2 - x - 1 = 0[/tex], given that [tex]-\frac{1}{5}[/tex] is a zero of [tex]f(x) = 25x^3 + 25x^2 - x - 1[/tex].

Answer :

The absolute maximum point for the function [tex]\(f(x) = 2x^3 - 4x^2 + 2\)[/tex]on the interval [tex]\(\left[\frac{1}{2}, 1\right]\) is \((\frac{4}{3}, \frac{22}{9})\).[/tex]

To find the absolute maximum point of the function [tex]\( f(x) = 2x^3 - 4x^2 + 2 \)[/tex]on the interval [tex]\( \left[\frac{1}{2}, 1\right] \),[/tex] we need to analyze the critical points and endpoints within this interval.

First, let's find the critical points by taking the derivative of f(x) and setting it equal to zero:

[tex]\[ f'(x) = 6x^2 - 8x = 0 \][/tex]

[tex]\[ 2x(3x - 4) = 0 \][/tex]

This gives us two critical points: x = 0 and [tex]\( x = \frac{4}{3} \)[/tex]. However, x = 0 is not within the interval [tex]\( \left[\frac{1}{2}, 1\right] \),[/tex] so we only need to consider [tex]\( x = \frac{4}{3} \).[/tex]

Now, let's find the values of f(x) at the critical point and the endpoints of the interval:

[tex]\[ f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 - 4\left(\frac{1}{2}\right)^2 + 2 = \frac{1}{2} - 1 + 2 = \frac{5}{2} \][/tex]

[tex]\[ f\left(1\right) = 2(1)^3 - 4(1)^2 + 2 = 2 - 4 + 2 = 0 \][/tex]

[tex]\[ f\left(\frac{4}{3}\right) = 2\left(\frac{4}{3}\right)^3 - 4\left(\frac{4}{3}\right)^2 + 2 = \frac{32}{3} - \frac{64}{9} + 2 = \frac{22}{9} \][/tex]

Comparing these values, we see that [tex]\( f\left(\frac{4}{3}\right) = \frac{22}{9} \)[/tex] is the largest, so the absolute maximum point is [tex]\( \left(\frac{4}{3}, \frac{22}{9}\right) \).[/tex]

Therefore, the correct answer is option d. [tex]\( \left(\frac{4}{3}, \frac{22}{9}\right) \).[/tex]

The Correct question is:

Given the function f left parenthesis x right parenthesis equals 2 x cubed minus 4 x squared plus 2; locate the absolute maximum point for this function on the interval open square brackets 1 half comma space 1 close square brackets. a. (1, 0) b. open parentheses 1 half comma space 5 over 4 close parentheses c. only (0, 2) d. open parentheses 2 over 3 comma space 22 over 27 close parentheses