Answer :
To divide the expression
[tex]$$\frac{36x^4 + 12x^8}{12x^4}$$[/tex]
we can split the fraction into two parts:
1. For the first term:
[tex]$$\frac{36x^4}{12x^4} = \frac{36}{12} \cdot \frac{x^4}{x^4} = 3 \cdot 1 = 3.$$[/tex]
2. For the second term:
[tex]$$\frac{12x^8}{12x^4} = \frac{12}{12} \cdot \frac{x^8}{x^4} = 1 \cdot x^{8-4} = x^4.$$[/tex]
Thus, when we combine the simplified terms, the quotient is:
[tex]$$3 + x^4.$$[/tex]
[tex]$$\frac{36x^4 + 12x^8}{12x^4}$$[/tex]
we can split the fraction into two parts:
1. For the first term:
[tex]$$\frac{36x^4}{12x^4} = \frac{36}{12} \cdot \frac{x^4}{x^4} = 3 \cdot 1 = 3.$$[/tex]
2. For the second term:
[tex]$$\frac{12x^8}{12x^4} = \frac{12}{12} \cdot \frac{x^8}{x^4} = 1 \cdot x^{8-4} = x^4.$$[/tex]
Thus, when we combine the simplified terms, the quotient is:
[tex]$$3 + x^4.$$[/tex]