Answer :
We start with the equation:
[tex]$$
2.5x + 0.5 = 6.25.
$$[/tex]
Step 1: Isolate the term with [tex]\(x\)[/tex].
Subtract [tex]\(0.5\)[/tex] from both sides to remove the constant term:
[tex]$$
2.5x = 6.25 - 0.5.
$$[/tex]
Evaluating the right-hand side gives:
[tex]$$
2.5x = 5.75.
$$[/tex]
Step 2: Solve for [tex]\(x\)[/tex].
Divide both sides of the equation by [tex]\(2.5\)[/tex]:
[tex]$$
x = \frac{5.75}{2.5}.
$$[/tex]
Evaluating the division yields:
[tex]$$
x = 2.3.
$$[/tex]
Thus, the solution to the equation is:
[tex]$$
x = 2.3.
$$[/tex]
[tex]$$
2.5x + 0.5 = 6.25.
$$[/tex]
Step 1: Isolate the term with [tex]\(x\)[/tex].
Subtract [tex]\(0.5\)[/tex] from both sides to remove the constant term:
[tex]$$
2.5x = 6.25 - 0.5.
$$[/tex]
Evaluating the right-hand side gives:
[tex]$$
2.5x = 5.75.
$$[/tex]
Step 2: Solve for [tex]\(x\)[/tex].
Divide both sides of the equation by [tex]\(2.5\)[/tex]:
[tex]$$
x = \frac{5.75}{2.5}.
$$[/tex]
Evaluating the division yields:
[tex]$$
x = 2.3.
$$[/tex]
Thus, the solution to the equation is:
[tex]$$
x = 2.3.
$$[/tex]