College

The expression [tex]\frac{1}{2} b h[/tex] can be used to find the area of a triangle.

Find the area of the triangle if [tex]b = 6.2[/tex] inches and [tex]h = 5[/tex] inches.

Answer :

To find the area of a triangle, you can use the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times b \times h \][/tex]

where [tex]\( b \)[/tex] is the base of the triangle, and [tex]\( h \)[/tex] is the height.

In this problem, the base [tex]\( b \)[/tex] is given as 6.2 inches, and the height [tex]\( h \)[/tex] is 5 inches. Let's use the formula step-by-step to find the area:

1. Identify the formula: [tex]\(\text{Area} = \frac{1}{2} \times b \times h\)[/tex].

2. Substitute the given values:
- Base ([tex]\( b \)[/tex]) = 6.2 inches
- Height ([tex]\( h \)[/tex]) = 5 inches

Plug these values into the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times 6.2 \times 5 \][/tex]

3. Calculate the multiplication:
- First, multiply 6.2 by 5:
[tex]\[ 6.2 \times 5 = 31 \][/tex]

- Then, multiply this result by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} \times 31 = 15.5 \][/tex]

So, the area of the triangle is 15.5 square inches.