Answer :
Sure! Let's simplify the expression step-by-step:
The given expression is:
[tex]\[ 2x^3(5x^3 - 7) \][/tex]
To simplify this, we need to distribute [tex]\(2x^3\)[/tex] to each term inside the parentheses:
1. Distribute [tex]\(2x^3\)[/tex] to the first term [tex]\(5x^3\)[/tex]:
[tex]\[
2x^3 \times 5x^3 = 10x^{3+3} = 10x^6
\][/tex]
2. Distribute [tex]\(2x^3\)[/tex] to the second term [tex]\(-7\)[/tex]:
[tex]\[
2x^3 \times (-7) = -14x^3
\][/tex]
Now, combine the results from both steps:
[tex]\[ 10x^6 - 14x^3 \][/tex]
Therefore, the simplified expression is:
[tex]\[ 10x^6 - 14x^3 \][/tex]
This matches with option B.
The given expression is:
[tex]\[ 2x^3(5x^3 - 7) \][/tex]
To simplify this, we need to distribute [tex]\(2x^3\)[/tex] to each term inside the parentheses:
1. Distribute [tex]\(2x^3\)[/tex] to the first term [tex]\(5x^3\)[/tex]:
[tex]\[
2x^3 \times 5x^3 = 10x^{3+3} = 10x^6
\][/tex]
2. Distribute [tex]\(2x^3\)[/tex] to the second term [tex]\(-7\)[/tex]:
[tex]\[
2x^3 \times (-7) = -14x^3
\][/tex]
Now, combine the results from both steps:
[tex]\[ 10x^6 - 14x^3 \][/tex]
Therefore, the simplified expression is:
[tex]\[ 10x^6 - 14x^3 \][/tex]
This matches with option B.