College

Simplify [tex]$\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}$[/tex] completely.

A. [tex]$25x^3$[/tex]
B. [tex]$25x$[/tex]
C. [tex]$5x^3$[/tex]
D. [tex]$5x$[/tex]

Answer :

To simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex], you need to combine the cube roots by multiplying them under a single cube root:

1. Use the property of radicals: [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex].

2. Apply this property:
[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}
\][/tex]

3. Multiply the expressions inside the cube root:
[tex]\[
(5x) \cdot (25x^2) = 5 \cdot 25 \cdot x \cdot x^2 = 125x^3
\][/tex]

4. Substitute back into the cube root:
[tex]\[
\sqrt[3]{125x^3}
\][/tex]

5. Simplify the cube root:
[tex]\[
\sqrt[3]{125x^3} = \sqrt[3]{125} \cdot \sqrt[3]{x^3}
\][/tex]

6. Since [tex]\(125 = 5^3\)[/tex], this becomes:
[tex]\[
\sqrt[3]{125} = 5
\][/tex]

7. The cube root of [tex]\(x^3\)[/tex] is simply [tex]\(x\)[/tex]:
[tex]\[
\sqrt[3]{x^3} = x
\][/tex]

8. Combine the results from steps 6 and 7:
[tex]\[
5 \cdot x = 5x
\][/tex]

Therefore, the simplified expression is [tex]\(5x\)[/tex].