College

Given: [tex]f(x) = 5x^4 - 3x^2 + 6x + 2[/tex]. Find [tex]f(-2)[/tex].

A. -28
B. 10
C. 14
D. 58
E. 82

Answer :

We are given the function

[tex]$$
f(x) = 5x^4 - 3x^2 + 6x + 2.
$$[/tex]

We need to calculate [tex]$f(-2)$[/tex].

1. Substitute [tex]$x = -2$[/tex] into the function:

[tex]$$
f(-2) = 5(-2)^4 - 3(-2)^2 + 6(-2) + 2.
$$[/tex]

2. Calculate each term:

- The first term:

[tex]$$(-2)^4 = 16,$$[/tex]

so

[tex]$$5 \cdot 16 = 80.$$[/tex]

- The second term:

[tex]$$(-2)^2 = 4,$$[/tex]

so

[tex]$$-3 \cdot 4 = -12.$$[/tex]

- The third term:

[tex]$$6 \cdot (-2) = -12.$$[/tex]

- The constant term is [tex]$2$[/tex].

3. Add all the terms together:

[tex]$$
f(-2) = 80 - 12 - 12 + 2.
$$[/tex]

4. Combine the values:

[tex]$$
80 - 12 = 68, \quad 68 - 12 = 56, \quad 56 + 2 = 58.
$$[/tex]

Thus, the final answer is

[tex]$$
f(-2) = 58.
$$[/tex]