College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem of converting the temperature from degrees Fahrenheit to degrees Celsius using the provided function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], follow these steps:

1. Understand the Function: The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert temperatures from Fahrenheit to Celsius. In this context, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] gives the equivalent temperature in degrees Celsius.

2. Identify the Given Temperature: You need to convert a temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit.

3. Substitute the Given Temperature into the Function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

4. Perform the Calculation Inside the Parentheses:
- Start by subtracting 32 from 76.1:
[tex]\[
76.1 - 32 = 44.1
\][/tex]

5. Apply the Conversion Factor:
- Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
\][/tex]

The calculation results in approximately [tex]\( 24.5 \)[/tex] degrees Celsius. Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius.