Answer :
Sure! Let's simplify the expression step-by-step:
We have the expression [tex]\(14x^5(13x^2 + 13x^5)\)[/tex].
1. Use the Distributive Property:
- Distribute [tex]\(14x^5\)[/tex] to each term inside the parentheses.
2. First Term:
- Multiply [tex]\(14x^5\)[/tex] by [tex]\(13x^2\)[/tex].
- [tex]\(14 \times 13 = 182\)[/tex]
- [tex]\(x^5 \times x^2 = x^{5+2} = x^7\)[/tex]
- Combine these to get [tex]\(182x^7\)[/tex].
3. Second Term:
- Multiply [tex]\(14x^5\)[/tex] by [tex]\(13x^5\)[/tex].
- [tex]\(14 \times 13 = 182\)[/tex]
- [tex]\(x^5 \times x^5 = x^{5+5} = x^{10}\)[/tex]
- Combine these to get [tex]\(182x^{10}\)[/tex].
4. Combine the Terms:
- The simplified expression is [tex]\(182x^7 + 182x^{10}\)[/tex].
So, the correct answer is c. [tex]\(182x^7 + 182x^{10}\)[/tex].
We have the expression [tex]\(14x^5(13x^2 + 13x^5)\)[/tex].
1. Use the Distributive Property:
- Distribute [tex]\(14x^5\)[/tex] to each term inside the parentheses.
2. First Term:
- Multiply [tex]\(14x^5\)[/tex] by [tex]\(13x^2\)[/tex].
- [tex]\(14 \times 13 = 182\)[/tex]
- [tex]\(x^5 \times x^2 = x^{5+2} = x^7\)[/tex]
- Combine these to get [tex]\(182x^7\)[/tex].
3. Second Term:
- Multiply [tex]\(14x^5\)[/tex] by [tex]\(13x^5\)[/tex].
- [tex]\(14 \times 13 = 182\)[/tex]
- [tex]\(x^5 \times x^5 = x^{5+5} = x^{10}\)[/tex]
- Combine these to get [tex]\(182x^{10}\)[/tex].
4. Combine the Terms:
- The simplified expression is [tex]\(182x^7 + 182x^{10}\)[/tex].
So, the correct answer is c. [tex]\(182x^7 + 182x^{10}\)[/tex].