Answer :
We are given the function
$$
f(x) = \frac{1}{9} \cdot 3^x.
$$
To find $f(5)$, substitute $x = 5$ into the function:
$$
f(5) = \frac{1}{9} \cdot 3^5.
$$
Now, calculate $3^5$:
$$
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243.
$$
Then,
$$
f(5) = \frac{1}{9} \times 243.
$$
Dividing $243$ by $9$ gives:
$$
\frac{243}{9} = 27.
$$
Thus, the value of $f(5)$ is $\boxed{27}$.
$$
f(x) = \frac{1}{9} \cdot 3^x.
$$
To find $f(5)$, substitute $x = 5$ into the function:
$$
f(5) = \frac{1}{9} \cdot 3^5.
$$
Now, calculate $3^5$:
$$
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243.
$$
Then,
$$
f(5) = \frac{1}{9} \times 243.
$$
Dividing $243$ by $9$ gives:
$$
\frac{243}{9} = 27.
$$
Thus, the value of $f(5)$ is $\boxed{27}$.