High School

Select the correct answer.

Simplify the expression [tex]-4x^2(3x-7)[/tex].

A. [tex]-12x^3+28x^2[/tex]
B. [tex]-12x^3+28[/tex]
C. [tex]-12x^3-28x^2[/tex]
D. [tex]-12x^3-28[/tex]

Answer :

To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], we can apply the distributive property. This property allows us to multiply each term inside the parentheses by the term outside the parentheses.

Let's go through the steps:

1. Multiply [tex]\(-4x^2\)[/tex] by the first term in the parentheses: [tex]\(3x\)[/tex].

[tex]\[
-4x^2 \times 3x = (-4 \times 3) \times (x^2 \times x) = -12x^3
\][/tex]

2. Multiply [tex]\(-4x^2\)[/tex] by the second term in the parentheses: [tex]\(-7\)[/tex].

[tex]\[
-4x^2 \times (-7) = (-4 \times -7) \times x^2 = 28x^2
\][/tex]

3. Combine the results from both multiplications.

The expression simplifies to:

[tex]\[
-12x^3 + 28x^2
\][/tex]

So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].

Therefore, the correct answer is option A: [tex]\(-12x^3 + 28x^2\)[/tex].