Answer :
To solve the problem, we're looking at different options for linear equations. Let's analyze each option step by step:
1. Option: [tex]\( x + 7 = 5 \)[/tex]
- Subtract 7 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[
x = 5 - 7 = -2
\][/tex]
2. Option: [tex]\( x = 5 + 7 \)[/tex]
- Simplify the right side:
[tex]\[
x = 12
\][/tex]
3. Option: [tex]\( x + 7 = 12 \)[/tex]
- Subtract 7 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[
x = 12 - 7 = 5
\][/tex]
4. Option: [tex]\( x + 5 = 7 \)[/tex]
- Subtract 5 from both sides to find [tex]\( x \)[/tex]:
[tex]\[
x = 7 - 5 = 2
\][/tex]
After evaluating these options, the correct choice that satisfies the given information is the one where the equation is [tex]\( x + 7 = 12 \)[/tex], and the solution is [tex]\( x = 5 \)[/tex].
1. Option: [tex]\( x + 7 = 5 \)[/tex]
- Subtract 7 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[
x = 5 - 7 = -2
\][/tex]
2. Option: [tex]\( x = 5 + 7 \)[/tex]
- Simplify the right side:
[tex]\[
x = 12
\][/tex]
3. Option: [tex]\( x + 7 = 12 \)[/tex]
- Subtract 7 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[
x = 12 - 7 = 5
\][/tex]
4. Option: [tex]\( x + 5 = 7 \)[/tex]
- Subtract 5 from both sides to find [tex]\( x \)[/tex]:
[tex]\[
x = 7 - 5 = 2
\][/tex]
After evaluating these options, the correct choice that satisfies the given information is the one where the equation is [tex]\( x + 7 = 12 \)[/tex], and the solution is [tex]\( x = 5 \)[/tex].