College

Perform the indicated operations. Write the resulting polynomial in standard form.

[tex]\left(7x^7 + 5x^4 - 4\right) - \left(2x^7 + 9x^4 + 14\right)[/tex]

A. [tex]5x^7 - 4x^4 + 10[/tex]
B. [tex]5x^7 - 4x^4 - 18[/tex]
C. [tex]-17x^{11}[/tex]
D. [tex]5x^7 + 7x^4 + 10[/tex]

Answer :

To solve the problem of performing the indicated operations on the polynomials and writing the resulting polynomial in standard form, follow these steps:

1. Identify the given polynomials:

The first polynomial is [tex]\( 7x^7 + 5x^4 - 4 \)[/tex].

The second polynomial is [tex]\( 2x^7 + 9x^4 + 14 \)[/tex].

2. Set up the subtraction:

We need to subtract the second polynomial from the first polynomial:

[tex]\((7x^7 + 5x^4 - 4) - (2x^7 + 9x^4 + 14)\)[/tex].

3. Perform the subtraction for each term:

- Subtract the [tex]\(x^7\)[/tex] terms:

[tex]\(7x^7 - 2x^7 = 5x^7\)[/tex].

- Subtract the [tex]\(x^4\)[/tex] terms:

[tex]\(5x^4 - 9x^4 = -4x^4\)[/tex].

- Subtract the constant terms:

[tex]\(-4 - 14 = -18\)[/tex].

4. Write the resulting polynomial:

Combine all the terms obtained from the subtraction:

The resulting polynomial is [tex]\(5x^7 - 4x^4 - 18\)[/tex].

5. Write the polynomial in standard form:

A polynomial is in standard form when the terms are written in descending order of degrees. The polynomial [tex]\(5x^7 - 4x^4 - 18\)[/tex] is already in standard form because the terms are ordered from the highest degree (7) to the lowest (constant term).

Thus, the resulting polynomial is [tex]\(\mathbf{5x^7 - 4x^4 - 18}\)[/tex].

Therefore, the correct answer is b. [tex]\(5x^7 - 4x^4 - 18\)[/tex].