Answer :
To solve this problem, we need to understand what the function [tex]\( C(A) = \frac{5}{9}(F - 32) \)[/tex] does. This function is used to convert temperatures from degrees Fahrenheit to degrees Celsius. Here, [tex]\( F \)[/tex] represents the temperature in Fahrenheit, and [tex]\( C(A) \)[/tex] is the temperature in Celsius after the conversion.
Now, let's see what [tex]\( C(76.1) \)[/tex] specifically represents.
1. Identify the given Fahrenheit temperature: Kareem found the high temperature to be [tex]\( 76.1^\circ \)[/tex] Fahrenheit on his first day of school.
2. Apply the conversion formula: We will substitute [tex]\( F = 76.1 \)[/tex] into the function [tex]\( C(A) = \frac{5}{9}(F - 32) \)[/tex].
3. Subtract 32 from the Fahrenheit temperature:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Convert the difference to Celsius by multiplying by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Calculate the result:
[tex]\[
\frac{5}{9} \times 44.1 = 24.5
\][/tex]
So, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius, resulting in approximately 24.5 degrees Celsius.
This matches the given options exactly as:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Now, let's see what [tex]\( C(76.1) \)[/tex] specifically represents.
1. Identify the given Fahrenheit temperature: Kareem found the high temperature to be [tex]\( 76.1^\circ \)[/tex] Fahrenheit on his first day of school.
2. Apply the conversion formula: We will substitute [tex]\( F = 76.1 \)[/tex] into the function [tex]\( C(A) = \frac{5}{9}(F - 32) \)[/tex].
3. Subtract 32 from the Fahrenheit temperature:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Convert the difference to Celsius by multiplying by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Calculate the result:
[tex]\[
\frac{5}{9} \times 44.1 = 24.5
\][/tex]
So, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius, resulting in approximately 24.5 degrees Celsius.
This matches the given options exactly as:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.