College

On his first day of school, Kareem found the high temperature to be [tex]$76.1^{\circ}$[/tex] Fahrenheit. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius. What does [tex][tex]$C(76.1)$[/tex][/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit

Answer :

To solve this problem, we need to understand what the function [tex]\( C(A) = \frac{5}{9}(F - 32) \)[/tex] does. This function is used to convert temperatures from degrees Fahrenheit to degrees Celsius. Here, [tex]\( F \)[/tex] represents the temperature in Fahrenheit, and [tex]\( C(A) \)[/tex] is the temperature in Celsius after the conversion.

Now, let's see what [tex]\( C(76.1) \)[/tex] specifically represents.

1. Identify the given Fahrenheit temperature: Kareem found the high temperature to be [tex]\( 76.1^\circ \)[/tex] Fahrenheit on his first day of school.

2. Apply the conversion formula: We will substitute [tex]\( F = 76.1 \)[/tex] into the function [tex]\( C(A) = \frac{5}{9}(F - 32) \)[/tex].

3. Subtract 32 from the Fahrenheit temperature:
[tex]\[
76.1 - 32 = 44.1
\][/tex]

4. Convert the difference to Celsius by multiplying by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]

5. Calculate the result:
[tex]\[
\frac{5}{9} \times 44.1 = 24.5
\][/tex]

So, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius, resulting in approximately 24.5 degrees Celsius.

This matches the given options exactly as:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.