College

Karissa begins to solve the equation:

[tex]
\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\]
[/tex]

Her work is correct and is shown below:

[tex]
\[
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \\
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \\
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\end{array}
\]
[/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2}x = -\frac{1}{2}x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(-\frac{1}{2}\)[/tex]

C. 0

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex]:

We start with the given equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

1. Distribute: First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side of the equation:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

2. Simplify both sides: Combine like terms on both sides.

Left side:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

Right side:
[tex]\[
\frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]

So the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

3. Subtract 4 from both sides: This gives:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

4. Solve for [tex]\( x \)[/tex]: To isolate [tex]\( x \)[/tex], add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

Simplify:
[tex]\[
x = 0
\][/tex]

Thus, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].