High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem of converting the temperature from degrees Fahrenheit to degrees Celsius using the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]:

1. Identify the Temperature:
The temperature that needs conversion is [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit.

2. Use the Conversion Formula:
The conversion formula given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], where [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] gives the temperature in degrees Celsius.

3. Substitute the Fahrenheit Temperature:
Substitute [tex]\( 76.1 \)[/tex] into the formula as follows:

[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

4. Calculate the Temperature in Celsius:
- First, calculate the difference: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Next, multiply by [tex]\( \frac{5}{9} \)[/tex]:

[tex]\[
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
\][/tex]

5. Interpret the Result:
The value [tex]\( C(76.1) \approx 24.5 \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit converted to degrees Celsius.

Hence, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:

- "The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius."