College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply and simplify the product: [tex](8-5i)^2[/tex].

Select the product:

A. 39
B. 89
C. [tex]39 - 80i[/tex]
D. [tex]89 - 80i[/tex]

Answer :

Sure! Let's solve the problem step-by-step.

We need to multiply and simplify the product of [tex]\((8 - 5i)^2\)[/tex].

1. Write out the expression:
[tex]\[
(8 - 5i)^2
\][/tex]

2. Rewrite the expression using binomial expansion:
[tex]\[
(8 - 5i) \times (8 - 5i)
\][/tex]

3. Apply the distributive property (FOIL method):
[tex]\[
(8 - 5i)(8 - 5i) = 8 \times 8 + 8 \times (-5i) + (-5i) \times 8 + (-5i) \times (-5i)
\][/tex]

4. Perform the multiplications:
[tex]\[
= 64 - 40i - 40i + 25i^2
\][/tex]

5. Simplify [tex]\(i^2\)[/tex] to [tex]\(-1\)[/tex]:
[tex]\[
= 64 - 40i - 40i + 25(-1)
\][/tex]

6. Combine like terms:
[tex]\[
= 64 - 80i - 25
\][/tex]

7. Combine the real parts and the imaginary parts:
[tex]\[
= (64 - 25) - 80i
\][/tex]

[tex]\[
= 39 - 80i
\][/tex]

Thus, the product [tex]\((8 - 5i)^2\)[/tex] simplifies to [tex]\(\boxed{39 - 80i}\)[/tex].