College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]$C(76.1)$[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

Certainly! To convert a temperature from degrees Fahrenheit to degrees Celsius, we use the formula:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

In this context, [tex]\( C(76.1) \)[/tex] would refer to converting the temperature of 76.1 degrees Fahrenheit into degrees Celsius.

Let's break it down step-by-step:

1. Identify the Fahrenheit temperature: In this case, the given temperature is 76.1 degrees Fahrenheit.

2. Apply the conversion formula:
- Subtract 32 from the Fahrenheit temperature:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
\frac{5}{9} \times 44.1 = 24.5
\][/tex]

3. Conclusion: The value [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to 24.5 degrees Celsius.

So, [tex]\( C(76.1) \)[/tex] means the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.