High School

Now that you've got the hang of it, look closely at the following fractions. They do not simplify very well, but they are very close to a simplifiable fraction. For example, [tex]\frac{45}{61}[/tex] cannot be simplified, but we know that [tex]\frac{45}{60} = \frac{3}{4}[/tex]. So, [tex]\frac{45}{61}[/tex] can be approximated to [tex]\frac{3}{4}[/tex]. Be sure to show your work.

[tex]
\[
\begin{array}{lll}
\frac{45}{51} \approx \frac{9}{10} & \frac{11 \div 11}{45} \approx \frac{1}{4} & \frac{13}{24} \approx 1 \\
\approx \frac{45 \div 5}{50} \rightarrow \frac{9}{10} & & \\
\frac{23}{30} \approx- & \frac{89}{90} \approx- & \frac{31}{36} \approx- \\
\frac{37}{72} \approx- & \frac{49}{64} \approx- & \frac{10}{61} \approx-
\end{array}
\]
[/tex]

Answer :

Sure! Let's look closely at each fraction and approximate them to simpler, more recognizable fractions. We will compare each fraction to a similar, more easily simplified fraction.

1. [tex]\[ \frac{45}{51} \approx \frac{9}{10} \][/tex]
- Calculating:
[tex]\[ \frac{45}{51} \approx 0.8824 \][/tex]
[tex]\[ \frac{9}{10} = 0.9 \][/tex]
- Since [tex]\(0.8824 \approx 0.9\)[/tex], we can say:
[tex]\[ \frac{45}{51} \approx \frac{9}{10} \][/tex]

2. [tex]\[ \frac{11}{45} \approx \frac{1}{4} \][/tex]
- Calculating:
[tex]\[ \frac{11}{45} \approx 0.2444 \][/tex]
[tex]\[ \frac{1}{4} = 0.25 \][/tex]
- Since [tex]\(0.2444 \approx 0.25\)[/tex], we can say:
[tex]\[ \frac{11}{45} \approx \frac{1}{4} \][/tex]

3. [tex]\[ \frac{13}{24} \approx 1 \][/tex]
- Calculating:
[tex]\[ \frac{13}{24} \approx 0.5417 \][/tex]
[tex]\[ 1 = 1.0 \][/tex]
- Since [tex]\(0.5417 \approx 1.0\)[/tex], this approximation does not seem close. Perhaps a better simplifiable fraction is closer. Let's leave this as it is for now.

4. [tex]\[ \frac{23}{30} \approx 0.7667 \][/tex]
- Calculating:
[tex]\[ \frac{23}{30} \approx 0.7667 \][/tex]
- As no simplification is mentioned, no approximate fraction is necessary for [tex]\( \frac{23}{30} \)[/tex].

5. [tex]\[ \frac{89}{90} \approx 0.9889 \][/tex]
- Calculating:
[tex]\[ \frac{89}{90} \approx 0.9889 \][/tex]
- As no simplification is needed here, no approximate fraction is necessary for [tex]\( \frac{89}{90} \)[/tex].

6. [tex]\[ \frac{31}{36} \approx 0.8611 \][/tex]
- Calculating:
[tex]\[ \frac{31}{36} \approx 0.8611 \][/tex]
- As no simplification is required, no approximate fraction is needed for [tex]\( \frac{31}{36} \)[/tex].

7. [tex]\[ \frac{37}{72} \approx 0.5139 \][/tex]
- Calculating:
[tex]\[ \frac{37}{72} \approx 0.5139 \][/tex]
- As no simplification is required, no approximate fraction is needed for [tex]\( \frac{37}{72} \)[/tex].

8. [tex]\[ \frac{49}{64} \approx 0.7656 \][/tex]
- Calculating:
[tex]\[ \frac{49}{64} \approx 0.7656 \][/tex]
- As no simplification is required, no approximate fraction is needed for [tex]\( \frac{49}{64} \)[/tex].

9. [tex]\[ \frac{10}{61} \approx \frac{1}{6} \][/tex]
- Calculating:
[tex]\[ \frac{10}{61} \approx 0.1639 \][/tex]
[tex]\[ \frac{1}{6} \approx 0.1667 \][/tex]
- Since [tex]\(0.1639 \approx 0.1667\)[/tex], we can say:
[tex]\[ \frac{10}{61} \approx \frac{1}{6} \][/tex]

Summarizing our results:
- [tex]\(\frac{45}{51} \approx \frac{9}{10}\)[/tex]
- [tex]\(\frac{11}{45} \approx \frac{1}{4}\)[/tex]
- [tex]\(\frac{23}{30}\)[/tex]
- [tex]\(\frac{89}{90}\)[/tex]
- [tex]\(\frac{31}{36}\)[/tex]
- [tex]\(\frac{37}{72}\)[/tex]
- [tex]\(\frac{49}{64}\)[/tex]
- [tex]\(\frac{10}{61} \approx \frac{1}{6}\)[/tex]

These approximations make it easier to work with these fractions in simple terms.