High School

What are the quotient and remainder of [tex]\left(2x^4+5x^3-2x-8\right) \div (x+3)[/tex]?

A. [tex]2x^3-x^2+3x-11 ; 1[/tex]
B. [tex]2x^4-x^3+3x^2-11 ; 25[/tex]
C. [tex]2x^3-x^2+3x-11 ; 25[/tex]
D. [tex]2x^3-x^2+3x+11 ; 25[/tex]

Please select the best answer from the choices provided:
A
B
C
D

Answer :

To find the quotient and remainder of the polynomial division [tex]\((2x^4 + 5x^3 - 2x - 8) \div (x + 3)\)[/tex], let's perform the division step by step:

1. Set up the division: We are dividing the polynomial [tex]\(2x^4 + 5x^3 - 2x - 8\)[/tex] by [tex]\(x + 3\)[/tex].

2. Divide the leading terms: Divide the leading term of the dividend, [tex]\(2x^4\)[/tex], by the leading term of the divisor, [tex]\(x\)[/tex].

[tex]\[
\frac{2x^4}{x} = 2x^3
\][/tex]

This gives us the first term of the quotient, [tex]\(2x^3\)[/tex].

3. Multiply and subtract: Multiply [tex]\(2x^3\)[/tex] by the entire divisor [tex]\(x + 3\)[/tex]:

[tex]\[
2x^3 \cdot (x + 3) = 2x^4 + 6x^3
\][/tex]

Subtract this from the original polynomial:

[tex]\[
(2x^4 + 5x^3 - 2x - 8) - (2x^4 + 6x^3) = -x^3 - 2x - 8
\][/tex]

4. Repeat the process: Divide the new leading term [tex]\(-x^3\)[/tex] by [tex]\(x\)[/tex]:

[tex]\[
\frac{-x^3}{x} = -x^2
\][/tex]

Add [tex]\(-x^2\)[/tex] to the quotient.

5. Multiply and subtract again: Multiply [tex]\(-x^2\)[/tex] by [tex]\(x + 3\)[/tex]:

[tex]\[
-x^2 \cdot (x + 3) = -x^3 - 3x^2
\][/tex]

Subtract:

[tex]\[
(-x^3 - 2x - 8) - (-x^3 - 3x^2) = 3x^2 - 2x - 8
\][/tex]

6. Repeat: Divide [tex]\(3x^2\)[/tex] by [tex]\(x\)[/tex]:

[tex]\[
\frac{3x^2}{x} = 3x
\][/tex]

Add [tex]\(3x\)[/tex] to the quotient.

7. Multiply and subtract: Multiply [tex]\(3x\)[/tex] by [tex]\(x + 3\)[/tex]:

[tex]\[
3x \cdot (x + 3) = 3x^2 + 9x
\][/tex]

Subtract:

[tex]\[
(3x^2 - 2x - 8) - (3x^2 + 9x) = -11x - 8
\][/tex]

8. Final step: Divide [tex]\(-11x\)[/tex] by [tex]\(x\)[/tex]:

[tex]\[
\frac{-11x}{x} = -11
\][/tex]

Add [tex]\(-11\)[/tex] to the quotient.

9. Final multiplication and subtraction: Multiply [tex]\(-11\)[/tex] by [tex]\(x + 3\)[/tex]:

[tex]\[
-11 \cdot (x + 3) = -11x - 33
\][/tex]

Subtract to find the remainder:

[tex]\[
(-11x - 8) - (-11x - 33) = 25
\][/tex]

So, the quotient is [tex]\(2x^3 - x^2 + 3x - 11\)[/tex] and the remainder is [tex]\(25\)[/tex]. From the given options, this matches:

c. [tex]\(2x^3 - x^2 + 3x - 11 ; 25\)[/tex]

The correct answer is C.