High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]\left(4x^2 + 3x + 7\right)(8x - 5)[/tex]

A. [tex]32x^3 + 4x^2 + 41x - 35[/tex]
B. [tex]32x^3 - 4x^2 - 41x + 35[/tex]
C. [tex]32x^3 - 44x^2 - 71x - 35[/tex]
D. [tex]32x^3 + 4x^2 + 41x + 35[/tex]

Answer :

To multiply the polynomials [tex]\((4x^2 + 3x + 7)(8x - 5)\)[/tex], we will distribute each term from the first polynomial to each term of the second polynomial and then combine like terms. Let's go through this step-by-step:

1. Distribute [tex]\(4x^2\)[/tex] to each term in the second polynomial:
- [tex]\(4x^2 \cdot 8x = 32x^3\)[/tex]
- [tex]\(4x^2 \cdot (-5) = -20x^2\)[/tex]

2. Distribute [tex]\(3x\)[/tex] to each term in the second polynomial:
- [tex]\(3x \cdot 8x = 24x^2\)[/tex]
- [tex]\(3x \cdot (-5) = -15x\)[/tex]

3. Distribute [tex]\(7\)[/tex] to each term in the second polynomial:
- [tex]\(7 \cdot 8x = 56x\)[/tex]
- [tex]\(7 \cdot (-5) = -35\)[/tex]

Now, let's combine all these results:

- The [tex]\(x^3\)[/tex] term is [tex]\(32x^3\)[/tex].
- The [tex]\(x^2\)[/tex] terms are [tex]\(-20x^2 + 24x^2 = 4x^2\)[/tex].
- The [tex]\(x\)[/tex] terms are [tex]\(-15x + 56x = 41x\)[/tex].
- The constant term is [tex]\(-35\)[/tex].

Combining these, we get the final result:

[tex]\[
32x^3 + 4x^2 + 41x - 35
\][/tex]

Thus, the correct choice is A. [tex]\(32x^3 + 4x^2 + 41x - 35\)[/tex].