College

Multiply the polynomials:

[tex]\left(4x^2 + 3x + 7\right)(8x - 5)[/tex]

A. [tex]32x^3 - 4x^2 - 41x + 35[/tex]
B. [tex]32x^3 + 4x^2 + 41x + 35[/tex]
C. [tex]32x^3 - 44x^2 - 71x - 35[/tex]
D. [tex]32x^3 + 4x^2 + 41x - 35[/tex]

Answer :

To solve the problem of multiplying the polynomials [tex]\( (4x^2 + 3x + 7)(8x - 5) \)[/tex], we need to use the distributive property, also known as the FOIL method for binomials.

Here's how you can step through the multiplication:

1. Distribute each term of the first polynomial to each term of the second polynomial.

- Multiply [tex]\( 4x^2 \)[/tex] by each term in [tex]\( (8x - 5) \)[/tex]:
- [tex]\( 4x^2 \times 8x = 32x^3 \)[/tex]
- [tex]\( 4x^2 \times (-5) = -20x^2 \)[/tex]

- Multiply [tex]\( 3x \)[/tex] by each term in [tex]\( (8x - 5) \)[/tex]:
- [tex]\( 3x \times 8x = 24x^2 \)[/tex]
- [tex]\( 3x \times (-5) = -15x \)[/tex]

- Multiply [tex]\( 7 \)[/tex] by each term in [tex]\( (8x - 5) \)[/tex]:
- [tex]\( 7 \times 8x = 56x \)[/tex]
- [tex]\( 7 \times (-5) = -35 \)[/tex]

2. Combine all the terms together:

- Combine the results from the distribution:
[tex]\[
32x^3 + (-20x^2) + 24x^2 + (-15x) + 56x + (-35)
\][/tex]

3. Simplify by combining like terms:

- For the [tex]\( x^2 \)[/tex] terms: [tex]\(-20x^2 + 24x^2 = 4x^2\)[/tex]
- For the [tex]\( x \)[/tex] terms: [tex]\(-15x + 56x = 41x\)[/tex]
- The constant term: [tex]\(-35\)[/tex]

4. Write out the final polynomial:

[tex]\[
32x^3 + 4x^2 + 41x - 35
\][/tex]

So, the correct answer is [tex]\( 32x^3 + 4x^2 + 41x - 35 \)[/tex], which matches with option D.