High School

Multiply the polynomials:

[tex]
(4x^2 + 3x + 7)(8x - 5)
[/tex]

A. [tex]32x^3 - 44x^2 - 71x - 35[/tex]

B. [tex]32x^3 - 4x^2 - 41x + 35[/tex]

C. [tex]32x^3 + 4x^2 + 41x + 35[/tex]

D. [tex]32x^3 + 4x^2 + 41x - 35[/tex]

Answer :

Let's multiply the polynomials [tex]\((4x^2 + 3x + 7)(8x - 5)\)[/tex] step-by-step to find the correct answer.

1. Multiply each term in the first polynomial by each term in the second polynomial:

- [tex]\(4x^2 \times 8x = 32x^3\)[/tex]
- [tex]\(4x^2 \times -5 = -20x^2\)[/tex]
- [tex]\(3x \times 8x = 24x^2\)[/tex]
- [tex]\(3x \times -5 = -15x\)[/tex]
- [tex]\(7 \times 8x = 56x\)[/tex]
- [tex]\(7 \times -5 = -35\)[/tex]

2. Combine like terms:

- For the [tex]\(x^3\)[/tex] term, we have [tex]\(32x^3\)[/tex].
- For the [tex]\(x^2\)[/tex] terms, combine [tex]\(-20x^2 + 24x^2 = 4x^2\)[/tex].
- For the [tex]\(x\)[/tex] terms, combine [tex]\(-15x + 56x = 41x\)[/tex].
- The constant term is [tex]\(-35\)[/tex].

Putting it all together, the resulting polynomial is:

[tex]\[ 32x^3 + 4x^2 + 41x - 35 \][/tex]

The correct answer is:

D. [tex]\(32x^3 + 4x^2 + 41x - 35\)[/tex]