Answer :
Sure! Let's evaluate the expression [tex]\( C = \frac{5}{9}(F - 32) \)[/tex] for [tex]\( F = 77 \)[/tex] degrees using substitution and simplification.
### Step-by-Step Solution:
1. Substitute [tex]\( F \)[/tex] with 77 in the given formula:
[tex]\[
C = \frac{5}{9}(77 - 32)
\][/tex]
2. Calculate the value inside the parentheses:
[tex]\[
77 - 32 = 45
\][/tex]
3. Substitute 45 back into the expression:
[tex]\[
C = \frac{5}{9} \times 45
\][/tex]
4. Multiply [tex]\(\frac{5}{9}\)[/tex] by 45:
[tex]\[
\frac{5}{9} \times 45 = 25
\][/tex]
So, the value of [tex]\( C \)[/tex] when [tex]\( F = 77 \)[/tex] degrees is [tex]\( 25 \)[/tex].
Therefore, the answer is [tex]\( 25 \)[/tex].
### Step-by-Step Solution:
1. Substitute [tex]\( F \)[/tex] with 77 in the given formula:
[tex]\[
C = \frac{5}{9}(77 - 32)
\][/tex]
2. Calculate the value inside the parentheses:
[tex]\[
77 - 32 = 45
\][/tex]
3. Substitute 45 back into the expression:
[tex]\[
C = \frac{5}{9} \times 45
\][/tex]
4. Multiply [tex]\(\frac{5}{9}\)[/tex] by 45:
[tex]\[
\frac{5}{9} \times 45 = 25
\][/tex]
So, the value of [tex]\( C \)[/tex] when [tex]\( F = 77 \)[/tex] degrees is [tex]\( 25 \)[/tex].
Therefore, the answer is [tex]\( 25 \)[/tex].