High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the following expressions:

\[
\begin{array}{r}
x^2 + 4x + 2 \\
\times \quad (2x^2 + 3x - 4) \\
\hline
\end{array}
\]

Choose the correct product:

A. \([2x^4 + 23x^2 - 10x - 8]\)
B. \([3x^2 + 7x - 2]\)
C. \([2x^4 + 11x^3 + 12x^2 - 10x - 8]\)
D. \([2x^4 + 12x^2 - 8]\)

Answer :

Sure! Let's multiply the two polynomials step by step:

We are given:
[tex]\[ (x^2 + 4x + 2) \times (2x^2 + 3x - 4) \][/tex]

We can multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.

### Step-by-step calculation:

1. Multiply each term in [tex]\(x^2 + 4x + 2\)[/tex] by [tex]\(2x^2\)[/tex]:
- [tex]\(x^2 \times 2x^2 = 2x^4\)[/tex]
- [tex]\(4x \times 2x^2 = 8x^3\)[/tex]
- [tex]\(2 \times 2x^2 = 4x^2\)[/tex]

2. Multiply each term in [tex]\(x^2 + 4x + 2\)[/tex] by [tex]\(3x\)[/tex]:
- [tex]\(x^2 \times 3x = 3x^3\)[/tex]
- [tex]\(4x \times 3x = 12x^2\)[/tex]
- [tex]\(2 \times 3x = 6x\)[/tex]

3. Multiply each term in [tex]\(x^2 + 4x + 2\)[/tex] by [tex]\(-4\)[/tex]:
- [tex]\(x^2 \times -4 = -4x^2\)[/tex]
- [tex]\(4x \times -4 = -16x\)[/tex]
- [tex]\(2 \times -4 = -8\)[/tex]

### Adding all these results together:

- [tex]\(2x^4\)[/tex]
- [tex]\(8x^3 + 3x^3 = 11x^3\)[/tex]
- [tex]\(4x^2 + 12x^2 - 4x^2 = 12x^2\)[/tex]
- [tex]\(6x - 16x = -10x\)[/tex]
- [tex]\(-8\)[/tex]

Therefore, the expanded form of the polynomial is:
[tex]\[ 2x^4 + 11x^3 + 12x^2 - 10x - 8 \][/tex]

The correct answer is C. [tex]\(2x^4 + 11x^3 + 12x^2 - 10x - 8\)[/tex].