High School

Find [tex]f(5)[/tex] for [tex]f(x)=\frac{1}{9}(3)^x[/tex].

A. 3
B. 27
C. 81
D. 9

Answer :

To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex], follow these steps:

1. Identify the function: We are given the function [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex].

2. Substitute the value of [tex]\( x \)[/tex]: We need to find [tex]\( f(5) \)[/tex], which means we substitute [tex]\( x = 5 \)[/tex] into the function.

3. Evaluate the expression:
- Calculate [tex]\( 3^5 \)[/tex].
- [tex]\( 3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243 \)[/tex].

4. Multiply by [tex]\(\frac{1}{9}\)[/tex]:
- Now, multiply the result by [tex]\(\frac{1}{9}\)[/tex].
- [tex]\(\frac{1}{9} \times 243 = 27\)[/tex].

Therefore, the value of [tex]\( f(5) \)[/tex] is [tex]\( 27 \)[/tex].

So the correct answer is B. 27.