College

Multiply:

[tex]\left(x^4+1\right)\left(3x^2+9x+2\right)[/tex]

A. [tex]x^4 + 3x^2 + 9x + 3[/tex]

B. [tex]3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2[/tex]

C. [tex]3x^7 + 9x^6 + 2x^5[/tex]

D. [tex]3x^8 + 9x^4 + 2x^4 + 3x^2 + 9x + 2[/tex]

Answer :

To multiply the expressions [tex]\((x^4 + 1)(3x^2 + 9x + 2)\)[/tex], we will apply the distributive property, which involves distributing each term in the first polynomial to each term in the second polynomial.

Let's break this down step-by-step:

1. Start by distributing [tex]\(x^4\)[/tex]:
- [tex]\(x^4 \times 3x^2 = 3x^6\)[/tex]
- [tex]\(x^4 \times 9x = 9x^5\)[/tex]
- [tex]\(x^4 \times 2 = 2x^4\)[/tex]

2. Next, distribute the constant term [tex]\(1\)[/tex]:
- [tex]\(1 \times 3x^2 = 3x^2\)[/tex]
- [tex]\(1 \times 9x = 9x\)[/tex]
- [tex]\(1 \times 2 = 2\)[/tex]

Now let's combine all these results together:

- From [tex]\(x^4 \times (3x^2 + 9x + 2)\)[/tex], we get: [tex]\(3x^6 + 9x^5 + 2x^4\)[/tex]
- From [tex]\(1 \times (3x^2 + 9x + 2)\)[/tex], we get: [tex]\(3x^2 + 9x + 2\)[/tex]

Finally, add all these terms together:

[tex]\[ 3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2 \][/tex]

This is the expanded form of the original product, [tex]\( (x^4 + 1)(3x^2 + 9x + 2) \)[/tex].