Answer :
To find the mass of the crate, we will use the formula for force:
[tex]\[ F = m \times a \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (200 N in this case),
- [tex]\( m \)[/tex] is the mass we want to find,
- [tex]\( a \)[/tex] is the acceleration (8 m/s² in this case).
We can rearrange this formula to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{F}{a} \][/tex]
Let's plug in the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So the mass of the crate is 25 kg.
[tex]\[ F = m \times a \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (200 N in this case),
- [tex]\( m \)[/tex] is the mass we want to find,
- [tex]\( a \)[/tex] is the acceleration (8 m/s² in this case).
We can rearrange this formula to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{F}{a} \][/tex]
Let's plug in the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So the mass of the crate is 25 kg.