High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply and simplify the product:

[tex]$(8-5i)^2$[/tex]

Select the product:

A. 39
B. 89
C. [tex]$39 - 80i$[/tex]
D. [tex]$89 - 80i$[/tex]

Answer :

To multiply and simplify the product [tex]\((8 - 5i)^2\)[/tex], we can follow these steps:

1. Understand the Expression: We are given the expression [tex]\((8 - 5i)^2\)[/tex]. This means we need to square the complex number [tex]\(8 - 5i\)[/tex].

2. Apply the Formula: The square of a complex number [tex]\((a + bi)\)[/tex] is given by:
[tex]\[
(a + bi)^2 = a^2 + 2abi + (bi)^2
\][/tex]

3. Identify the Values: Here, [tex]\(a = 8\)[/tex] and [tex]\(b = -5\)[/tex]. So the expression is [tex]\((8 + (-5)i)^2\)[/tex].

4. Calculate Each Term:
- Calculate [tex]\(a^2\)[/tex]: [tex]\(8^2 = 64\)[/tex].
- Calculate [tex]\(2abi\)[/tex]: [tex]\(2 \times 8 \times (-5)i = -80i\)[/tex].
- Calculate [tex]\((bi)^2\)[/tex]: [tex]\((-5i)^2 = 25i^2\)[/tex], and since [tex]\(i^2 = -1\)[/tex], this becomes [tex]\(25 \times (-1) = -25\)[/tex].

5. Combine the Results:
- The real part is: [tex]\(64 - 25 = 39\)[/tex].
- The imaginary part is: [tex]\(-80i\)[/tex].

6. Write the Simplified Form: The final answer is:
[tex]\[
39 - 80i
\][/tex]

Based on this step-by-step calculation, the product of [tex]\((8 - 5i)^2\)[/tex] is [tex]\(39 - 80i\)[/tex]. Therefore, the correct answer from the given options is [tex]\(\boxed{39 - 80i}\)[/tex].