College

Multiply and simplify the product: [tex]\((8 - 5i)^2\)[/tex].

Select the product:

A. 39
B. 89
C. 39 - 80i
D. 89 - 80i

Answer :

To solve the problem of multiplying and simplifying the product [tex]\((8 - 5i)^2\)[/tex], follow these steps:

1. Start with the given expression:
[tex]\[(8 - 5i)^2\][/tex]

2. Use the formula for squaring a binomial:
[tex]\((a - b)^2 = a^2 - 2ab + b^2\)[/tex]

In this expression, [tex]\(a = 8\)[/tex] and [tex]\(b = 5i\)[/tex].

3. Substitute the values into the formula:
[tex]\[(8)^2 - 2(8)(5i) + (5i)^2\][/tex]

4. Calculate each term:
- The first term is [tex]\((8)^2 = 64\)[/tex].
- The second term is [tex]\(-2(8)(5i) = -80i\)[/tex].
- The third term is [tex]\((5i)^2 = 25i^2\)[/tex].

5. Recall that [tex]\(i^2 = -1\)[/tex], so [tex]\(25i^2 = 25(-1) = -25\)[/tex].

6. Substitute these results back:
[tex]\[64 - 80i - 25\][/tex]

7. Combine the real parts:
[tex]\[64 - 25 = 39\][/tex]

8. Write the final simplified expression:
[tex]\[39 - 80i\][/tex]

Therefore, the simplified product is [tex]\(39 - 80i\)[/tex].